Evaluation of different cortical source localization methods using simulated and experimental EEG data.
نویسندگان
چکیده
Different cortical source localization methods have been developed to directly link the scalp potentials with the cortical activities. Up to now, these methods are the only possible solution to noninvasively investigate cortical activities with both high spatial and time resolutions. However, the application of these methods is hindered by the fact that they have not been rigorously evaluated nor compared. In this paper, the performances of several source localization methods (moving dipoles, minimum Lp norm, and low resolution tomography (LRT) with Lp norm, p equal to 1, 1.5, and 2) were evaluated by using simulated scalp EEG data, scalp somatosensory evoked potentials (SEPs), and upper limb motor-related potentials (MRPs) obtained on human subjects (all with 163 scalp electrodes). By using simulated EEG data, we first evaluated the source localization ability of the above methods quantitatively. Subsequently, the performance of the various methods was evaluated qualitatively by using experimental SEPs and MRPs. Our results show that the overall LRT Lp norm method with p equal to 1 has a better source localization ability than any of the other investigated methods and provides physiologically meaningful reconstruction results. Our evaluation results provide useful information for choosing cortical source localization approaches for future EEG/MEG studies.
منابع مشابه
Combination of Beamforming and Synchronization Methods for Epileptic Source Localization, using Simulated EEG Signals
Localization of sources in patients with focal seizure has recently attracted many attentions. In the severe cases of focal seizure, there is a possibility of doing neurosurgery operation to remove the defected tissue. The prosperity of this heavy operation completely depends on the accuracy of source localization. To increase this accuracy, this paper presents a new weighted beamforming method...
متن کاملEvaluation of Electroencephalography Source Localization Algorithms with Multiple Cortical Sources
BACKGROUND Source localization algorithms often show multiple active cortical areas as the source of electroencephalography (EEG). Yet, there is little data quantifying the accuracy of these results. In this paper, the performance of current source density source localization algorithms for the detection of multiple cortical sources of EEG data has been characterized. METHODS EEG data were ge...
متن کاملAssessment criteria for MEG/EEG cortical patch tests.
To validate newly developed methods or implemented software for magnetoencephalography/electroencephalography (MEG/EEG) source localization problems, many researchers have used human skull phantom experiments or artificially constructed forward data sets. Between the two methods, the use of an artificial data set constructed with forward calculation attains superiority over the use of a human s...
متن کاملSimultaneous head tissue conductivity and EEG source location estimation
Accurate electroencephalographic (EEG) source localization requires an electrical head model incorporating accurate geometries and conductivity values for the major head tissues. While consistent conductivity values have been reported for scalp, brain, and cerebrospinal fluid, measured brain-to-skull conductivity ratio (BSCR) estimates have varied between 8 and 80, likely reflecting both inter-...
متن کاملFunctional connectivity analysis in EEG source space: The choice of method
Functional connectivity (FC) is among the most informative features derived from EEG. However, the most straightforward sensor-space analysis of FC is unreliable owing to volume conductance effects. An alternative-source-space analysis of FC-is optimal for high- and mid-density EEG (hdEEG, mdEEG); however, it is questionable for widely used low-density EEG (ldEEG) because of inadequate surface ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- NeuroImage
دوره 25 2 شماره
صفحات -
تاریخ انتشار 2005